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1. Introduction:   Choices with Multiple Destinations and Multiple Days.

This report estimates the economic value of access to sites in the New England and

Middle Atlantic states (Maine through Virginia) and changes in the availability of fish

caught for recreational purposes for anglers on overnight trips in 1994.  It follows a

similar study (Hicks et al.) that uses a random utility model to estimate similar values for

anglers on day trips.  Both studies rely on the same survey datasets, the Marine

Recreational Fishing Statistical Survey (MRFSS) and an associated economic survey

completed in 1994.  The Hicks et al. study exploits the single day trips while we analyze

the overnight trips.

The emphasis in this report is inferring economic values from overnight trips using

anglers’ behavior.  In previous work (McConnell and Strand), we used a contingent

valuation approach to measuring the economic values for overnight trips. The approach

was not completely satisfactory because it required an ex post evaluation of the fishing

experience, sometimes as long as two months after a trip.  One could use a contingent

behavior question that was set in an ex ante mode but this data was not available.  Further,

it seems unnecessarily complex to use two methods of valuation—behavioral for the day

trips and hypothetical for the overnight trips—when in fact one may be defensible.

Contingent valuation has a role in analyzing more subtle components of fishing, but the

basics of choice for single day trips and overnight trips—choosing among alternatives that

differ by distance and the quality of fishing—are sufficiently similar to warrant the same

approach.

Previous work on single day fishing trips, on the MRFSS data as well as in other

settings, has proved the random utility model (RUM) to be an effective means of

estimating site, mode and species choices, and calculating welfare gains or losses for

changes in the conditions of catching fish.  In past research, the modeling of overnight

trips has proceeded differently from the single day trip.  Several dimensions of overnight

trips make them different from single day trips.  First and perhaps most important, many

overnight trips are not just for fishing, but are multiple purpose trips.  The single day trip

can more frequently be characterized as a single purpose trip, whereas overnight trips may

be principally for business or family vacation.  A second problem with overnight trips is



2

the length of the trip, which becomes a choice variable.  That is, a household decides not

just where to go but how many days to stay.  The length of stay has costs unconnected to

the travel costs.  The choice of trip destination may still be subject to the standard choice

model, but the days per trip, or the total days per period is not a simple function of travel

costs.  The number and nature of the “blocks of time” available to the angler may be

critical but are not easily measured.

The number of overnight trips is substantial. Of the 29745 marine recreational

fishing trips intercepted (and recorded type of trip) during 1994 in New England and the

Mid-Atlantic, over 5200 (or 19 %) reported that they were on an overnight trip.  Because

of this magnitude, it is essential to understand their behavior and account for them in the

welfare analysis.  One could simply expand the day trip estimates proportionately but they

are likely differences between the two groups that would make such a procedure

hazardous.

To give a notion of the difference between persons on overnight trips and on day

trips, Table 1 is constructed. It shows the means and standard deviations of several

characteristics of trips for persons who took overnight and single day trips.  For

description and analysis, the destination of a fishing trip is characterized in part by three

fishing modes: shore, party/charter, and private boat.  First, the percent of overnight trips

fished from shore was approximately the same as for the sample of persons on day trips.

However, the percentage of overnight trips taken from party/charter boats is nearly twice

the percentage of day trips.  The lower percent of trips using the private boat mode during

the overnight excursions could arise because many anglers may not want to take their boat

on a longer trip.  Alternatively, the type of people taking the overnight trips may be

different, with at least a portion of the sample being less committed to recreational fishing.

This is borne out when we look at other individual characteristics of the anglers.

The overnight trips tend to occur during the warmer months (July-October),

supporting the idea that these fishing trips are frequently part of a vacation.  The total

number of trips in the last two months for persons on overnight trips is approximately one-

half of those taken by persons on day trips.  The hours-spent fishing is slightly less and the

money spent per individual on boat fees is slightly greater.  The number of years fished is
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nearly 25% less for the persons on overnight trips and the respondents are slightly

younger.  Moreover, only about one-third of the sample of individuals on overnight trips

stated that they would not have taken the trip if they could not fish on it.  On the other

hand, the hours worked per week and the household size of persons on overnight trips are

quite similar to values for persons on one-day trips.

When we consider spatial differences, the likelihood of a site being the intercept

site for someone on an overnight vis-à-vis a one-day trip increases in the states of

Delaware, Maryland, Massachusetts, and Virginia.  In other states it decreases. The

presence of summer resort areas (such as Rehobeth, Dewey Beach, Ocean City, Cape Cod

and Virginia Beach) in these states might explain the difference.  New Jersey is an

exception that could result from the concentration of the population (in Newark and

Philadelphia) living close (within an hour) to the Atlantic and hence accessible for a single

day trip.

The literature on travel cost models has handled multiple destinations and multiple

day trips in a variety of ways.  Researchers have often encountered these trips in otherwise

homogeneous data.  Often they are dispensed with casually, for example, by estimating

separate demand functions or demand functions for trips of different length.  Mendelson et

al. treat the multiple destination problem more systematically by aggregating groups of

site destinations into an additional alternative.  This is perhaps a plausible treatment but

does not address the multiple day nature of the MRFSS data.  Parsons and Wilson provide

a conceptually neat solution to the multiple destination trip by treating other destinations

as incidental consumption and simply including the ‘price’ of this consumption in the site

demand curve.  Bell and Leeworthy confront a problem similar to ours.  They model the

number of days-spent beach going as a function of the costs per day plus the cost per trip.

This approach for the continuous travel cost model makes a reasonable but still arbitrary

allocation of the fixed trip costs to the individual beach days.
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Table 1: Means of Sample and Individual Characteristics, Single and Overnight
Trips during 1994.

Percent of Sample
Intercepted in:

Overnight Trips
(n=994)

Day Trips
(n=3692)

Shore 47.4% 44.6%
Party/Charter 26.2 11.2
Private Boat 26.5 44.2

May-June 22.0 26.8
July-August 45.8 40.8

September-October 29.3 23.0
November-December 2.90 8.50

Connecticut 0.8 5.2
Delaware 14.3 6.8

Maine 4.3 2.7
Maryland 8.1 6.2

Massachusetts 29.6 17.7
New Hampshire 1.3 2.2

New Jersey 9.0 11.2
New York 5.1 21.4

Rhode Island 8.9 10.9
Virginia 18.7 15.7

Individual and Trip
Characteristics

Sample
Mean

Percent of
Sample

Reporting

Sample
Mean

Percent of
Sample

Reporting
Days fished in last 2

months
3.33 99.7% 6.11 99.1%

Days in last two
months visiting
intercept site

2.38 15.0 4.99 19.2

Hours fished 3.64 100 3.78 100
Travel expenses 20.89 96.4 8.07 98.3

Lodging Expense 162.48 90.9 NA NA
Boat fee 52.94 11.6 40.55 4.1

Years fished 15.31 34.5 19.53 28.5
Hours worked / week 44.41 27.6 44.70 28.2

Age 41.52 34.2 44.14 27.6
Household size 3.14 37.9 3.05 27.8

Income lost on fishing
trip

540.07 4.0 164.94 1.2

Fishing necessary to
trip? (1 if yes)

.29 99.9 - -
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Most recently, Shaw and Ozog have used a repeated nested multinomial logit

approach that permits the angler to choose between no trip, a single day trip and a trip of

greater than one day. While this approach combines the sample of persons on single day

trips and overnight trips, it does not analyze the choice of time on a trip in a consistent

manner.  That is, during a fixed period of time, persons who choose single day trips have a

greater number of choice occasions than anglers choosing to take two-week trips.  A

modeling of the time allocation choice over an extended period would be required to

address the single and multiple day trip choice properly.  That is beyond the scope of this

project and the data on which the analysis rests.

We address the problem of the choice of where to go conditional on the angler

having chosen the multiple-day trip.  The Hicks et al. study has addressed the single day

trips during 1994 and our analysis will allow a union of the two studies.  By not examining

the choice of how many trips to take and what type of trip (i.e. single day or overnight),

we eliminate substitution possibilities for the angler.  Although this is a shortcoming, we

can assess the direction of the effects on welfare measures.

We face the same kinds of problems in modeling the site choice for multiple day

trips.  The two problems are 1) extra days spent on site do not depend on travel cost; 2)

trips have multiple destinations and multiple purposes.  Because the data place limitations

on our approach, we do not deal with multiple destinations but instead use the distance

from the angler’s residence to the alternative sites to calculate the cost of a trip.  We also

do not attempt to model the length of the trip, limiting ourselves to the analysis of the trip

destination.  We investigate the impact of motives other than fishing on the estimated

models.  As part of the survey instrument, anglers are asked about other motives for

making the trip.  Responses to these questions can be used to help uncover the effects of

different motives on site choice.  However, the motive variable is not easily expanded

beyond the sample.  In the future, focus should be placed on understanding what

household characteristics can be used to predict motives.  With these characteristics that

more readily available, the analysis can be extended beyond the sample with greater

confidence of the results.  In sum, our study uses origin-destination data from residence to
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fishing sites to explain the choice of location of overnight trips, much as the random utility

models for single day trips.

In the following sections we describe and estimate a random utility model for

overnight trips that involve fishing.  We use the estimated parameters of these models to

calculate various welfare measures.  These measures provide estimates of anglers’

aggregate willingness to pay for aspects of the marine sports fishing.  One type of

measurement pertains to changes in catch rates.  Such changes might be induced by shifts

in fishery policy or in changes in trends of pollution, which could reasonably be expected

to change fish stocks.  Another type of measurement relates to discrete changes in access

to fishing sites.  Some fishery management plans might call for a moratorium on catching

various kinds of fish.  Other events that could cause a change in access might be a regional

oil spill, which would eliminate access to a large set of sites for a period of time.

Ultimately the contribution of this research is in buttressing the economic value of marine

sports fishing derived from single day trips.  Ignoring the value of overnight trips means

that a significant portion of sport fishing activity is not accounted for when values are

estimated or that the incorrect “per trip” measure of value is applied when results are

aggregated.  An obvious candidate for the “per trip” value is the measure estimated for

single day trips.  Our results for various welfare measures are in fact quite different from

the Hicks et al. results.

2.  The Structure of the Model

As in previous studies, we consider the choice of sites, mode of fishing and species

sought to be conditional on the individual having made the decision to take a fishing trip

and use the information in that analysis to determine how many fishing trips they decide to

take.  The site/mode/species choice is discussed first.

2.1 The Random Utility Model

We follow the Hicks et al. model specification, using the historical catch rates

rather than an expected catch rate based on characteristics of an angler.  The Hicks et al.

study obtained more realistic parameter estimates with the expected catch rates and there

is reason to believe that anglers on trips with other purposes (like “family” vacations) are
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less likely to have clearly formed expectations.  The overnight sample, for example, has a

greater percentage of anglers who do not target any species.

Suppose that the angler gets satisfaction from attributes of the site.  Travel is

costly because of the opportunity cost of time and money.  We model what species to fish

for, how to fish for them and where to fish.  In this report, the ‘how to fish’ is designated

as mode.  Hence the choices can be reduced to species, mode and site.

Anglers typically have a target species.  Because there are so many species, we

cannot estimate models for each of the species.  Instead, the species are aggregated to

four groups1:

1.  Small game fish;

2.  Bottom fish;

3.  Flatfish;

4.  Big game fish.

Anglers will choose to fish for one of these groups.  Some anglers don’t choose.  They

will be designated as non-seeking or non-target anglers, making the 5th group:

5.  Non-target.

This makes the choice of species exhaustive.

There are many different ways to fish.  From a boat an angler can troll, drift, or

anchor, with or without chum.  Fishing from shore can include surfcasting, pier fishing,

jetty fishing, and others.  We aggregate fishing into three types of modes:

1.  Party or charter;

2.  Private boat;

3.  Shore.

This arrangement of choices gives 15 fishing alternatives—one for each of the three modes

and one for each of the five species groups.  The shore/big game combination is eliminated

from consideration because it is not a feasible choice.  Anglers would not typically seek

big game fish from shore.  This leaves 14 mode/species alternatives.

                                                       
1 The aggregation from species to groups is given in Appendix A.
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The remaining choice is where to fish.  In the New England and Middle Atlantic

area, NMFS maintains hundreds of sites where anglers are intercepted.  These sites are

aggregated into 63 sites that are essentially counties or aggregates of counties2.

The organization of the data partially determines the model of choices.  We could

have anglers pick species-mode-site at once.  It is more parsimonious in terms of

estimation and probably more realistic for the angler’s decision to model the choice as two

levels.  First the angler picks the mode/species group combination.  Given the

mode/species group choice, the angler picks a site.  This choice process can be modeled

with the random indirect utility function:

(1) mj mj mj   vu ε+=

where

m = mode/species combinations:  m = 1,…,14;

j = sites: j =1,…,63.

The umj is the angler’s utility from the choice mode m, site j, with the vmj being the

deterministic part and the εmj being the component of preferences random to the economist

but known to the angler.  Ultimately an individual angler i chooses from an individual-

specific choice set that we denote Si.   (In practice we find some mode/species

combinations not relevant.  Further we reduce by determining a reasonable choice set from

the 63 aggregated sites and then sampling from the choice set according to Ben-Akiva and

Lerman to reduce the estimation burden.)

To complete the model we have to specify both the deterministic element and the

random element.  The deterministic element has two components: the arguments and the

functional form.  The arguments are the attributes of the sites and the costs of fishing for

the species group in the mode at the site.  There is some variation in the preference

function across modes. The preference function shifts for the private boat mode when an

angler owns a boat.  Essentially the deterministic part of the indirect utility function has

the following structure:

(2)  m) species modefor  ratecatch  m, esmode/specifor  j siteat   timeand v(cost v  mj = .

                                                       
2 The 63 sites are given in Appendix B.
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This is in keeping with the idea that utility is generic.  When we describe the site fully by

giving the numerical value of its attributes we can determine the utility that can be gained

there.  This specification for the deterministic part of preferences can be motivated by

supposing that anglers fix the total time they spend on trips independently of where they

go.  Then, given the total time, they compare the utility from various sites and modes.

The cost depends on the distance traveled, the opportunity cost of time and the

mode/species combination.  If the angler foregoes wages as part of the trip, then time has

an opportunity cost.  Otherwise time is an argument by itself.  The mode/species costs

vary also.  Fishing from party or charter boats is more expensive than fishing from shore,

obviously.  The cost for site j, mode/species m is the sum of the travel costs and the

mode/species cost.  Hence a general parametric specification for vmj is

(3) m
2/1

mjfishjtimejm$ mj )Q( )TT(  )TCC(  v β+β+β++β=

where the β’s are parameters, Cm is the cost of fishing for mode/species group m, TCj is

the travel cost, TTj is the travel time for anglers who have no explicit opportunity cost of

time, and Qmj is the historic catch rate for the mode/species group m at site j.  When an

angler does have an explicit opportunity cost of time, the utility function can be written

(4) m
2/1

mjfishjjm$ mj )Q( )TT TCC(  v β+β+λ++β=

where λ is the opportunity cost of time3.  Since vmj is linear in income, the marginal utility

of income is constant for the individual. Because β$ is estimated to be the same for all

individuals, the marginal utility of income is the same across all individuals.  But the

marginal utility of catch rates goes down, because utility depends on the square root of the

catch rate.  The parameters have clear interpretations: β$ is the (negative of) the marginal

utility of income, βtime is the marginal disutility of travel time, βfish is the marginal utility of

the square root of catch rates and βm is simply a shift variable for utility at mode/species

group m.  The βfish will vary by mode and by region.  The β$ and βtime coefficients will be

constant across mode, season and region.  Note that some variables change across modes

only and others change across site but not across mode.  The travel cost and travel time

are the same to all modes in the same site vicinity.    The additional cost of fishing different

                                                       
3 We have assumed that the amount of time spent on site is predetermined and the same for all sites.
Hence in the random utility formulation it falls out of the site choice problem.
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mode/species groups does not depend on the site.  Only the catch rates vary by site and

mode/species group.

The stochastic term εmj we assume to have a generalized extreme value

distribution.  In a parsimoniously specified distribution, the extreme value gives the choice

probabilities of site given mode as:

(5)
∑
∈

θ
θ

=

Sj
jm

km

)/exp(v

)/exp(v
m) group esmode/speci|Sset  choice from k site(obPr .

In expression (5), θ (which is identically equal to 1-σ in the Hicks et al. report) is a

parameter of the distribution of εmj.  The preference function in (3) can be written

(6) m
2/1

mjfishjtimej$m$ mj Q TT  TCC  v β+β+β+β+β=

When the preference function has the form of equation (6), the conditional likelihood

becomes

(7)  
∑
∈

θβ+β+β

θβ+β+β
=

Sj

2/1
mjfishjtimej$

2/1
mkfishktimek$

)/)QTTCTexp((

)/)QTTCTexp((
m) group esmode/speci|k site(obPr .

Note that the Cm term drops out, since it is the same for all sites in the mode, as do any

terms such as the βm, which relate to modes only.  The estimation of (7) gives only relative

values of parameters--β$/θ, etc.

The probability of choosing a particular mode/species combination (say n) when

the preference function is given by (3) is given by

(8)
∑ θ+β+β

θ+β+β
=

m
mmm$

nnn$

)I  Cexp(

)I  Cexp(
n) group esmode/speci(obPr

where In is the inclusive value for mode/species group n:

(9) ∑∑
∈∈

θβ+β+β=θ=
Sj

2/1
njfishjtimej$

Sj
njn )/)QTTCTexp((ln())/vexp(ln(I

Note that if Cm varied by site, it would appear in (7) and not (8).  The data are not

sufficiently rich to permit this.  The two probabilities provide two ways of estimating the

parameters: 1) sequential estimation, in which one first forms the likelihood function for

site choice from (7) to obtain the parameter estimates in that probability and then uses the
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results in the likelihood function for mode/species choice found from (8) to estimate the

remaining parameters; 2) full information, in which likelihood function for the probability

of choosing a site and mode species combination is found using the product of (7) and (8).

The FIML has several advantages over sequential estimation.  It provides a gain in

efficiency and it also gives the correct standard errors.  Further, tests about coefficients

that appear in both stages (such as β$) can only be carried out with FIML.

The structure of the models in (7) and (8) reveals several approaches to the

handling of mode costs.  We can see from the conditional probability in (7) that if we

estimate the sequential model, mode costs will have no impact on the estimation of

parameters in (7) if they are included at that level.  Suppose however, that we do include

mode costs in (7) and estimate sequentially.  Then we would construct a likelihood

function from a revised version of (8) for the mode/species group choice:

(10)
∑ ′θ+β

′θ+β
=

m
mm

nn

)I exp(

)I  exp(
n) group esmode/speci(obPr

where the revised inclusive value is

 (11) ∑
∈

θβ+β++β=′
Sj

2/1
njfishjtimenj$n )/)QTT)CC(Texp((ln(I

Since Cn is the same for all sites, we can rewrite this inclusive value as

nn$n I  C)/( I +θβ=′

so that nn$n I  CI θ+β=′θ  (see equation 9) and we have the same model whether we include

the mode cost at the first or second level of the sequential estimation procedure.  If we do

the sequential estimation procedure by forming the likelihood functions from (7) and (8),

we get two independent estimates of β$.  This is in fact what we do in our estimation

procedure, and simple tests demonstrate that the two estimates are not significantly

different from each other.

2.2 Day Trips, Overnight Trips, and the Influence of Distance

Trying to understand the total number of trips that an angler takes, whether for

single day fishing or overnight trips, is an important component of measuring welfare,

because large changes in the conditions of fishing bring changes in the aggregate level of
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trips, and this can imply large changes in welfare.  Further, for short overnight trips, there

may be substitution between single day trips and overnight trips.  We limit our empirical

analysis to the estimation and use of a random utility model.  Here we discuss the issues

that pertain to the next step of the analysis, estimating a model that predicts the number of

multiple day trips for fishing, or the number of days fishing on multiple day trips.

From the previous discussions, two characteristics distinguish the overnight trips

from the day trips: the multiple purpose-multiple destination nature of overnight trips and

the additional choice of the number of days of fishing for an overnight trip.  We discuss

the implications of these characteristics on the overall demand for marine recreational

fishing trips but we do not pursue the estimation of the number of trips as a function of the

inclusive value and other characteristics of the anglers.

To begin, we ask the question—when does a trip become an overnight trip?  This

entails understanding the effect of distance on the length of a trip.  When the length of the

trip is sufficiently long, it becomes an overnight trip. We look intuitively at the relationship

between the duration of a trip and the cost of the trip.

Define the full costs of a trip as the product of the amount of time and the

opportunity cost of time.  Let d be the distance, s be the speed of travel, c be the travel

cost per mile, TT be the travel time, and T be the amount of time spent on site.  Then the

cost per trip, assuming that the angler is at an interior solution, trading an hour of work

for an hour of leisure at the rate λ, is given by:

(12)       λ(2⋅d/s + T)+2⋅c⋅d/s

In the empirical analysis, TT = 2⋅d/s, and for an interior solution, TC = λ(2⋅d/s)+2⋅c⋅d/s.

When the number of trips is chosen, λ can be taken as a constant value of time.  Further,

for short trips (but not necessarily long trips) it may also be constant with respect to trip

time.  With λ constant, the optimal number of trips would be determined by the trade-off

between a Hicksian bundle, z, costing p, and recreation trips x, costing λ(2⋅d/s + T)+2⋅c⋅

d/s per unit.  If we compare the cost of a trip to site j to the cost at site j* all that will

differ is the distance.  The cost difference with be

(dj –dj*)[λ(2/s) +2⋅c/s]
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which is simply TCj –TCj*. When only the differences matter, the cost or amount of time

on site disappears.

Now consider the costs when distance is considerable.  Suppose that K is an upper

limit on the amount of time that can be spent comfortably in all the activities of a day

trip—travel time plus on site time.  As in (12), the cost per trip is:

λ(2⋅d/s + T)+2⋅cd/s  for d ≤ (K-T)⋅s/2.

But suppose that the trip length exceeds K.  The effect of this longer day can be thought

of as a higher (maybe much higher) opportunity cost of time because sleeping time is

included in the travel time or the opportunity cost of time for an overnight stay becomes

relevant.  That is, as the single day trip lengthens, the opportunity cost of time rises.  Then

the cost per trip becomes

2⋅c⋅d/s+ Min  {λ⋅K + λ*(2⋅d/s + T –K), λ⋅K + C}

where λ * is the higher opportunity cost of time (induced by lost sleep, for example) and C

is the lodging and associated costs of an overnight stay.  As distance increases, costs go

up, and eventually the type of trip changes from a single day trip to an overnight trip.  This

type of expression can be used to determine the choice set for single day trips.  It also

shows why the choice set for overnight trips will be much larger.  The analysis can also be

used to show that as distance from a site increases, the percent of overnight trips should

increase relative to single day trips.

This simple analysis suggests that for a given angler, we would not expect to find

single day trips and overnight trips to the same site.  However, given the distances that we

observe traveled on some overnight trips, it seems reasonable to infer that an angler might

visit the same site on overnight trips as well as day trips.  This phenomenon can be

explained in part by the differences in motives for single day and overnight trips.  The

overnight trip may be vacation or business in part, even when fishing is an essential

component.  The difference in motive implies a different marginal utility.  In that case a

taste for variety will lead anglers to the observed behavior.

In past applications of random utility models, researchers have looked for ways to

address the idea that when fishing circumstances change, not only will anglers change their

choice of site, but they may also adjust the number of trips.  While not theoretically
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justified, researchers have found the approach of modeling the number of trips as a

function of the inclusive value as well as household characteristics practical and useful.

When we consider the analogue for multiple day trips, the simple relationship between

trips and the inclusive value breaks down for several reasons.  First, to the extent that

distance determines the inclusive value, the relationship between distance and the number

of multiple day trips may not be monotonic.  As the analysis above suggests, at low

distances the number of multiple day trips is likely to be small.  When distance increases,

the number of multiple day trips increases, but eventually the number declines as distance

become very large.  With this kind of relationship, the inclusive value may not be a good

predictor of multiple day trips.

A second issue in estimating a model for multiple day trips concerns the distinction

between the number of trips and days per trip.  For multiple day trips, anglers may fish

more than one day.  The number of days is analogous to the time spent on site in a more

traditional travel cost model.  One approach to the number of trips-number of days on site

is to treat the two quantities as two endogenous variables derived from a utility

maximization problem as in the formulation of an endogenous on-site time model4.  Let Ti

be the number of days on site, PTi be its price, Zi be the number of multiple day trips and

Hi be a vector of household characteristics such as income, residential location, etc.  Then

the general system for determining the number of days and number of trips would be

Zi = f(IVi, PTi, Hi)

Ti = g(IVi, PTi, Hi).

This model can be used to explain how trips and days on site change as fishing

circumstances change, as reflected by the inclusive value, IVi.  Note that the computation

of PT involves the opportunity cost of a day on site.  It might for example, be computed

from an angler’s response to the question concerning lost wages per trip.  Welfare effects

would be calculated by determining how the number of trips changes as inclusive values

change.  The joint modeling should be handled with care, because in many cases the

connection between the taking of the trip and fishing is quite tenuous.

                                                       
4 This model is developed in McConnell, 1992.
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The third issue relates to why the modeling of trips with different durations is

difficult.  Some arbitrary but fixed and constant length of time (say a two-month period or

a year) must constrain all anglers.  As trips of different duration take place, a different

number of choice occasions is possible within the fixed interval time.  To be completely

consistent, one would have to model the allocation of the fixed time limit for all anglers.

This would require modeling decisions outside the typical recreation demand model and

collecting data with far greater generality than is typically done.

3.  Empirical Issues in Constructing the Model

Every econometric model has built into it strategic assumptions about functional

form and specification as well as practical procedures for calculating exogenous variables

that precede the estimation stage.  The pre-estimation burden is especially great for

random utility models.  Part of the burden is in calculating the independent variables.

These are needed for all sites in the choice set for each individual angler, not just the

values at the site actually chosen.  Variables such as travel cost are simply handled by

making cost a function of distance.  The individual angler is in practice motivated by

perceived catch, but this is much harder to determine for all sites.  Further even knowing

which sites the individual actively considers is difficult.

There are three basic decisions to make about model construction:

1.  the set of independent variables to include;

2.  the calculation of independent variables;

3.  the individual angler’s choice set.

The first and second decisions are obviously related.  Consider for example catch data.

The ideal data would be the angler’s subjective assessment of the number, kind and size of

different species of fish that could be caught at each site.  Instead we settle for the historic

catch rate by groups of species.  To make the model operational, and to complement the

estimated models of single day trips by Hicks et al., we stick with the utility function

specified in equation  (6).  The slight generalization involves the catch rate.  We break the

catch rate and catch rate coefficients so that some model/species groups have different
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coefficients.  Further, we let the catch rate coefficient differ in the northern and southern

regions of the study area.  This is to accommodate the possibility that a different

composition of species is present during any wave in the two areas.  Species migrations

would make this a good practice.

The utility function in (3) has several other modifications.  We have reported the

list of variables actually used estimation in Table 2.  Most of the exogenous variables used

in estimation are the same as those found in the Hicks et al. report and are calculated in

the same way.  However, it is useful to review what the factors are and how they are

incorporated into the model.

A purely technical adjustment is imposed to account for aggregation within sites.

Each site in the study, which is essentially counties, is aggregated across a number of

NMFS intercept sites.  To help correct for the aggregation problems that this creates, we

introduce ln(Mj), where Mj is the number of individual sites within study site j.  (See Ben-

Akiva and Lerman.)   Further, we have a mode/angler variable to account for the

peculiarity of choices when an individual owns a boat.  We create a variable as follows:

Boatmi = 1 if the angler i owns a boat and mode m is private boat fishing;
  0 otherwise.

This variable captures the special attraction that private boat fishing will have for anglers

who own their own boats.

In addition, we include as an attribute of the site the number of miles of beach for

the site, which is activated only for waves 4 and 5.  This accounts for the summer

attractiveness of sites with many beaches, which would draw family vacationers.  A

distinction is also made regarding the attractiveness of sites during the colder months

(May/June) and (November/December) based on their southerly location. During colder

months, anglers are presumed to choose the more southerly sites.

Further, we use the indicator variable E, which takes a value of 1 if fishing is

essential to the trip, as a means of modifying the influence of the catch rate and the

number of fishing sites.  We interact E with the catch of small game.  We also interact E

with ln(M), because the number of fishing sites is not operative when fishing is not
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Table 2:  Definitions and Sources of Exogenous Variables.

Variable Definition Mean from
Chosen Site

Mean from
Choice Set

Source

TCj Travel Cost for site j = $.30*distance +
(income/2040)*time*interior
Distance = roundtrip distance from PC
Miler;
Time:  roundtrip travel time, predicted
for all sites based on self-reported time
and predicted time (distance/40miles
per hour);
Interior:  indicator equals one  if angler
can work extra hours for extra pay.

83.69 145.98 Angler-specific
data:
Economic
Add-on Survey

Other data
from PC Miler

TTj Travel time for site j = time*(1-interior) 2.27 3.95 PC miler
Qmj Mean of site catch rate mode/species m,

site j.
2.87 3.14 MRFSS

intercept
survey

Ln(Mj) Log of the number of intercept sites in
the aggregate site j.

3.62 3.51 MRFSS
Intercept
Survey site list

Boatmi Indicator:  equals one if angler i owns a
boat and the mode is private rental;  0
otherwise.

.19 .12 Economic
Add-on Survey

Cm Access cost for mode/species group m. 9.19 26.93 Means from
Economic
Add-on
Survey.

Bchj Miles of beach for site j. .26 .18 National
Estuarine
Inventory

Nj Indicator:  equals one if site is located
north of Delaware excluding Peconic
Bay in New York.

.75 .74 MRFSS
Intercept
Survey

Ei Indicator:  equals one if fishing is
essential for trip on which angler i is
intercepted.

.63 .63 MRFSS
Intercept
Survey

W36 Indicator: equals one if fishing occurs
during waves 3 or 6.

.29 .29 MRFSS
Intercept
Survey

W45 Indicator: equals one if fishing occurs
during waves 4 or 5.

.71 .71 MRFSS
Intercept
Survey
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essential for the angler.  As a consequence of these individual decisions, the utility function

for angler i for mode/species m, site j, wave t, becomes:

(13)
2/1

mjt36s
2/1

mjtir3612jti9

j457mi5j2m1ij1mj

Q)WN1(QENW)Mln(E

BchWBoatTTCTC   )t,i(v

⋅−β+⋅β+⋅β+⋅β

+⋅β+β+β+β+β=

In this equation for the deterministic part of the utility function we include the individual

observation index i, and the wave index t, as well as the mode/species index m and the site

index j.  The interaction between E and the catch rates and N and the catch rates varies

across mode/species combination.  Hence we can see the variables that change across

observation for a given site and mode/species combination.  Travel cost changes because

the opportunity cost of time varies across individuals and because anglers live different

distances from the alternatives.  The argument TT changes because of differences in the

location of residences and in a completely discrete way.  If the angler is classified as not

giving up wages, then time will enter directly.  All the anglers not in the labor force will

take the same amount of time to travel from a given residence to a given site. Further, in

contrast to the Hicks et al. model, we do not have ‘produced’ fish, so that the catch rate

does not vary across individuals.  All anglers are assumed to form their expectations about

catch using the same historical catch rate.  Table 3 gives the complete specification of the

deterministic portion of the utility function.  Table 3 also contains θ≡β11 , a parameter of

the stochastic part of the utility function.

The catch rates are only operative under certain circumstances.  The small game

catch rate works only if fishing was essential (E=1) for taking the trip.   The flatfish catch

rate has no influence during waves 3 and 6 for N=1. The variable N is a binary indicator,

taking on the value of zero for sites south of New Jersey, as well as Peconic Bay in New

York.  The idea that N works for waves 3 and 6 pertains to the tastes of anglers.  During

these months the cold weather matters most.  Peconic Bay is a relatively protected area

that attracts considerable fishing in the early spring and late fall.  The basic species groups

coefficients differ because anglers typically find some fish more
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Table 3: The Deterministic Portion of the Indirect Utility Function
Variables in the conditional site choice

utility model: v(mode, species, site j)

Variables in the
mode/species

choice utility model
V(PC,BG,j)= β1TCj + β2TTj + β7W45Bchj+β11 W36 N β9E⋅ln(Mj)+ β3

2/1
i,PC,BGQ + β1CBG,PC

V(PR,BG,j)= β1TCj + β2TTj + β7 W45 Bchj+ β11 W36 N β9E⋅ln(Mj)+ β3
1/2

iPR,BG,Q + (β5BOAT+ β1CBG,PR)

V(PC,SG,j)= β1TCj + β2TTj + β7 W45 Bchj+ β11 W36 N β9E⋅ln(Mj)+ β4E
1/2

iPC,SG,Q + β1CSG,PC

V(PR,SG,j)= β1TCj + β2TTj + β7 W45 Bchj+ β11W36 N β9E⋅ln(Mj)+ β4E
1/2

iPR,SG,Q + (β5BOAT+ β1CSG,PR)

V(SH,SG,j)= β1TCj + β2TTj + β7 W45Bchj+ β11 W36 N β9E⋅ln(Mj)+ β4E
1/2

iSH,SG,Q + β1CSG,SH

V(PC,FF,j)= β1TCj + β2TTj + β7 W45Bchj+ β11 W36 N β9E⋅ln(Mj)+ β8(1-N W36)

× 1/2
iPR,FF,Q

+ β1CFF,PR

V(PR,FF,j)= β1TCj + β2TTj + β7 W45Bchj+ β11 W36 N β9E⋅ln(Mj)+ β8(1-N W36)

× 1/2
iPC,FF,Q

+ (β5BOAT+ β1CFF,PC)

V(SH,FF,j)= β1TCj + β2TTj + β7 W45Bchj+ β11 W36 N β9E⋅ln(Mj)+ β8(1-N W36)

× 1/2
iSH,FF,Q

+ β1CFF,SH

V(PC,BF,j)= β1TCj + β2TTj + β7 W45Bchj+ β11W36 N β9E⋅ln(Mj)+ β6
1/2

iPC,BF,Q + β1CBF,PC

V(PR,BF,j)= β1TCj + β2TTj + β7 W45Bchj+ β11 W36 N β9E⋅ln(Mj)+ β6
2/1

i,PR,BFQ + (β5BOAT+ β1CBF,PR)

V(SH,BF,j)= β1TCj + β2TTj + β7 W45Bchj+ β11 W36 N β9E⋅ln(Mj)+ β6
1/2

iSH,BF,Q + β1CBF,SH

V(PC,NT,j)= β1TCj + β2TTj + β7 W45Bchj+ β11 W36 N β9E⋅ln(Mj)+ β10
1/2

iPC,NS,Q + β1CNS,PC

V(PR,NT,j)= β1TCj + β2TTj + β7 W45Bchj+ β11 W36 N β9E⋅ln(Mj)+ β10
2/1

i,PR,NSQ + (β5BOAT+ β1CNS,PR)

V(SH,NT,j)= β1TCj + β2TTj + β7 W45Bchj+ β11 W36 N β9E⋅ln(Mj)+ β10
1/2

iSH,NS,Q + β1CNS,SH

attractive to catch.  For example, we would expect that most anglers would rather catch a

striped bass (one of the small game) than a spot (one of the bottom fish).

For estimating the model we assume that the site choice is any site in the study

area.  In the single day model, the choice set is constrained by the amount of time that the

angler has to fish, given the travel required.  For example, in Hicks et al. the site choice

set is determined by the sites within 400 miles.  In the overnight data, anglers do not face
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the same time constraints.  They can use up most of a day in travel and fish the next day.

Hence we have no restrictions on the choice sets.

With no restrictions on the choice set, all anglers would be choosing from each of

the 63 sites.  This poses a problem for estimation, because such a large number of sites for

each angler would make the estimation dataset quite large.  For example, if each angler of

the 900 plus anglers in the overnight survey chooses among 63 sites and the 14

alternatives of Table 3, then the size of the dataset would be greater than 790,000 rows.

To reduce the size of the estimation dataset we sample sites, so that each site choice set is

a sample of four, as well as the site actually chosen.  Sampling also occurs at the

mode/species level for estimation.  Of the 14 alternatives, three are sampled, so that there

are four alternatives at this level.

The rather small sampling—four out of 63 sites and three out of the 14 mode-

species choices—is dictated by full information estimation of the model.   Estimating all of

the parameters at once, rather than sequentially, requires that the number of alternatives in

the dataset be fairly small.  Otherwise convergence will be hard to obtain, and even when

obtained will be quite time-consuming.  Estimating the FIML is not without costs,

however.  The efficiency gains that FIML conveys on parameter estimation may well be

lost because the number of alternatives needs to be reduced to accommodate the more

complicated likelihood function.  However, while sequential estimation with a larger

choice set might appear to give more efficient estimates, it produces standard errors that

are too small, and so part of the apparent increase in efficiency from more choices in the

LIML estimates is illusory.  The drawback of sequential estimation can be overcome by

using a correction factor for the variance-covariance matrix.

The data for estimating the models comes from the MRFSS.  This is a two part survey,

one part being a field intercept survey and the other being a random digit telephone

survey.  An additional economic survey, called the economic add-on, originates with the

intercept survey.  The intercept survey selects anglers systematically,  with known

probabilities, for the purpose of identifying, counting, weighing and measuring catch.  This

survey also collects some angler information:  the species targeted and the fishing

frequency in the past two months and twelve months.
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The economic add-on survey is administered to anglers in the intercept survey.  It is

designed to exploit the sampling properties of the intercept survey, and provide in addition

some of the information needed from individuals for estimating behavioral models.  The

economic add-on has two components:  the field questions that are administered as part of

the intercept survey, and a telephone follow-up interview that gathers additional

information from the angler.  For travel cost and random utility models, the economic add-

on survey provides information that is instrumental in calculating the cost of travel and the

cost of time, as well as travel time. The observations for anglers’ trips come from the

economic add-on survey.   The trip that is modeled in the random utility model is the trip

on which the angler was intercepted.

The random digit telephone survey is a random survey of the coastal and near-coastal

population.  Its purpose is to determine the number of anglers in the population as well as

the level of activity per angler.  In combination, the intercept and the phone survey are

used to estimate total catch by species, season, area and mode for recreational anglers.

The random digit phone survey is executed throughout the year to cover the five two

month periods: March-April, May-June, July-August, September-October, and November-

December.

4.  The Estimation of the Model.

 The dataset for estimation includes the 984 anglers who were intercepted as part

of an overnight trip.  The FIML procedure was run in GAUSS.  Table 4 shows the

parameter estimates.  These parameter estimates generally meet expectations about sign.

The cost and time coefficients are negative and highly significant.  The basic catch rates

are positive. The estimate of the inclusive value coefficient (θ) is .797, and is significantly

greater than zero and less than one at the 95% level of confidence. The interaction of

private rental and the indicator variable for the ownership of a boat works strongly to

influence choice.  The empirical magnitude is such that if angler A without a boat has a

10% probability of choosing a site, then angler B, equal in all ways but owning a boat,

would have about a 30% probability of choosing the same site.
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As we demonstrated in Section 2, the coefficient on the mode costs should be

equal to θ times the coefficient on travel costs because they are both just the negative of

the marginal utility of income.  In the estimation, these coefficients are constrained to be

equal.  The estimate of β1 is -.0078, and this is quite low, indicating that the choice of sites

is relatively unresponsive to increases in costs.  This may be in part due to the multiple

purpose nature of the trips.  The low estimate of β1 has the effect of raising the welfare

estimates for whatever changes confront the anglers.

The catch rate coefficients determine the economic gains and losses from the

changing the conditions of fishing.  When divided by the marginal utility of income, these

coefficients give the marginal value of increases in the historic catch rate.  For example,

for big game fishing, β3/β1 ≈ $60.  This is not the value of catching another fish, but the

value of increasing the historic catch rate by one, an improvement that would be quite

substantial.  Note that the estimates of catch rate coefficients are not comparable with the

estimates in Hicks et al.  In the single day trip model, the catch rate was an individual

expected catch rate model.

5.  The Calculation of Gains and Losses for Changes in Fishing Circumstances.

5.1  The Basic Theory

One of the advantages of the random utility model is its ability to provide welfare

estimates for a variety of realistic policy scenarios.   What makes the RUM work so well

for welfare estimation is that it models how anglers choose among different alternatives.

Because the utility from alternatives is assumed to be linear in income, equivalent and

compensating variation are equal to willingness to pay, which we denote WTP.  The WTP

for a change in fishing circumstances is defined as the amount of money that makes the

angler indifferent between the current situation and the changed situation.  It is understood

that if the change is worth paying for, then WTP represents the amount of money that

anglers would pay to get the change.  If the change reduces the fishing circumstances, the

WTP represents the payment that would have to be made to the anglers for compensation
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for the losses that would be incurred for worsening circumstances, or the amount of

income anglers would give up for improvements.

The calculation of WTP requires the exact formulation of the preference function.

Because this function is random to the analyst, it is necessary to eliminate the

Table 4:  Parameter Estimates For Random Utility Model.

Variablea Parameter Estimate
(t-ratio)

Conditional Site Choice Model
Travel Cost β$ -.0098

(-10.4)
Travel Time β2/θ -.280

(-8.22)
Beach Miles in Waves 4 and 5 β7/θ 0.776

(5.91)
E⋅Ln(M) β9/θ 0.074

(0.93)
Big Game Catch β3/θ 0.794

(1.62)
E⋅Small Game Catch β4/θ 0.297

(1.17)
Bottom Fish Catch β6/θ 0.197

(1.76)
Flatfish Catch (except North in
Waves 3 and 6)

β8/θ 0.654
(7.18)

Non-targeting Species β10/θ 0.163
(2.46)

Wave 3 and 6⋅North Sites β12/θ -1.066
(-7.43)

Mode/Species Choice Model
Inclusive Value =11â θ 0.797

(10.5)
Boat β5 1.493

(11.2)
Access Cost β$ -.0098

(-10.4)
χ2 (all parameters=0) =821.3
aVariables are defined in Table 2.

randomness and find the expected value of the maximum utility.  Hanemann has this

worked out for the nested multinomial logit:
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where * equals 1 for the change in circumstances and 0 for the initial circumstances and E

is the expectations operator.  The individual’s deterministic portion of the utility function,

)i(v*
mj , is given in equation (13), with the detailed specification of Table 3.  The WTP

estimate for individual i is

WTP(i) =ln{ [V1(i)/ V0(i)]}/β$.

Two observations on the calculation for the expected maximum utility:  first, the full set of

mode/species is included, so that the m goes from 1 to 14; second, the change is evaluated

at the individual’s full site choice set of 63 sites, not the sampled choice set.

5.2  Per Trip Gains and Losses

We calculate the welfare effects of three kinds of policy scenarios: loss of access in

a state, a unit increase in the historic catch, and a 50% increase in historic catch.  The loss

of access to fishing in a state is designed to answer the often asked question “What is the

economic value of recreational fishing?”. The real answer to this question is that it

depends on what is changing.  But the access values help fill the political need for a sort of

benchmark that gives some idea of the aggregate value of the activity, the ‘importance’ of

recreational fishing.  The welfare effects of catch rate changes are calculated to give

insight into more pertinent policy questions, such as what would be the value of a program

to enhance certain flatfish species or prohibiting fishing for tautog.

The scenarios for changes in catch rates have drawbacks.  First, in applying a

percent change, many sites are left out because they have zero catches, so that a percent

change of any size means no change.   This is especially true of big game catch rates.

Second, adding a fixed amount to current catch rates often results in quite a large percent

increase. Many sites and waves where one may expect zero catch will have at least 1 fish

caught.  Thus, use of models is best for analyzing a specific policy agenda when the policy

proposed contains the biological situation (i.e. new catch rates) inherent with it.

Table 5 contains the estimates by season and state for the loss per trip for a

representative angler.  The next to the last column gives the mean across all waves while
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the last column gives the percent reduction in the choice set induced by the state closure.

In general, the estimates are most strongly influenced by the size of the loss in terms of the

extent of the market, the seasonality, and the attributes of the state and the

Table  5: Closure Of All Fishing Sites In A State: Mean Loss Per Trip.
State May-June July-

August
September
-October

November-
December

Mean for All
Waves

% Change
in Choice
Set

Virginia $29.28 $30.13 $10.03 $15.89 $23.57 - 12.7%
Maryland 12.54 10.14 10.34 13.21 10.99 - 11
Delaware 11.70 6.87 4.67 9.91 8.32 - 06
New Jersey 4.11 4.64 10.86 6.44 6.32 - 12.7
New York 12.21 13.66 21.87 18.37 15.81 - 16
Connecticut 1.19 2.52 5.61 2.34 3.01 - 06
Rhode Island 2.21 5.46 5.44 2.53 4.45 - 08
Massachusetts 3.39 6.43 8.87 4.39 6.19 - 12.7
New Hampshire .40 .50 .70 .30 .50 -  03
Maine 2.38 3.43 4.67 2.28 3.43 - 12.7

distribution of users.  New Jersey has a long coastline, but since most of New Jersey’s

population is in the northern part of the state, near New York, the closure of New Jersey

has a relatively low loss.  The size of New York and the combination of size and being in

the south for Maryland and Virginia make the loss from closing these states the greatest.

The very brief coastal exposure of New Hampshire makes that the loss from the closure of

that state quite small.  Also, the estimated loss from closure of Delaware sites

is small in the summertime but in May-June and November-December, they increase due

to greater substitution from colder states during those period.

Tables 6 and 7 provide estimates of the gains per trip from improving the historic

catch rate.  Here we see the peculiar effects of the kinds of changes that we have specified.

In Table 6, the estimates for a 50% increase are tabulated.  The $4.51 figure for big game

catch rate for Virginia gives the value of increasing the historic catch rate for big game

species at fishing sites in all states, for anglers who were intercepted in Virginia.  Despite

the fact that the marginal value of improvements in the big game catch rate are higher than

for the other species, the big game value is quite low.  This is because in many cases the

big game catch rate is zero, and so with a 50% increase it is still zero.  The largest values
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for improvements in historic catch rates are realized for flat fish and bottom fish, where

the initial catch rates are highest. They are greater than the small game values in part

because values from enhanced small game catch arise only for anglers that consider fishing

essential to the trip and from anglers that were not targeting species.  The variation of the

values of improvements in historic catch rates across states stems from spatial differences

in the anglers who were intercepted in different states.  These variations are quite small.

Table 6:  A 50% Increase In Historic Catch Rates:
Gains Per Representative Angler
State Big

Game
Small
Game

Bottom
Fish

Flat Fish

Virginia $4.51 $3.36 $12.65 $11.04
Maryland 6.21 3.06 17.49 14.77
Delaware 6.11 4.05 19.02 16.72
New Jersey 6.84 3.87 20.58 16.15
New York 8.72 9.45 21.47 11.85
Connecticut 5.89 6.55 21.12 20.37
Rhode Island 9.04 7.82 21.86 12.83
Massachusetts 3.39 6.78 21.32 14.23
New Hampshire 10.00 3.75 19.91 11.87
Maine 6.05 4.40 17.79 15.54
All States 6.69 4.60 18.02 13.97

Table 7 gives the value of improving the historic catch rates by one fish for all

sites, by state.  This means that for those species groups that have very low or zero catch

rates, the improvement is quite substantial. In particular we see that the welfare gains for

big game fish are quite large, on the average about $55.  In both Tables 6 and 7 the values

for small game catch rate improvements are quite small.  In part this reflects the

specification that makes the small game catch rate operative only for anglers for whom

fishing is an essential component of the overnight trip.

5.3 Aggregate Gains and Losses.

The values per trip are useful for understanding the nature of welfare losses under

different circumstances.  But for these losses to be useful in considering trade-offs, say

between the costs of pollution control and the gain in the value of fishing, or commercial

versus recreational fishing, they have to be aggregated.  No existing estimates exist on the
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number of overnight trips taken (as opposed to the number of days fished on an overnight

trip). We can make an estimate of the number of overnight trips by creating a sample ratio

by wave of the number of days fished from anglers on overnight trips to the total

Table 7: An Increase Of +1  Fish in Historic Catch Rates:
Gains Per Representative Angler.

State Big
Game

Small
Game

Bottom
Fish

Flat Fish

Virginia $42.91 $4.70 $4.84 $12.26
Maryland 55.07 3.87 17.49 15.14
Delaware 60.33 5.05 6.36 16.17

New Jersey 63.64 3.87 6.75 18.16
New York 64.86 10.18 7.44 11.85

Connecticut 63.51 7.87 6.10 15.44
Rhode Island 60.71 8.22 6.63 19.44
Massachusetts 61.17 6.78 6.15 18.32

New Hampshire 57.37 3.99 6.20 16.31
Maine 55.15 4.40 6.55 15.54

All States 55.59 5.26 6.03 16.00

number of days fished .  This is then multiplied by the official NMFS’s estimate of total

trips by wave (Hicks et al.) to produce the total number of days fished by anglers on

overnight trips. This number is then divided by our sample estimate of the number of days

fished on an overnight trip to produce the total number of overnight trips.

One way of aggregating the values per trip is to compute the product of the

number of trips and the value per trip.  Table 8 gives the number of overnight trips by

state and wave for 1994. In order to aggregate the values to the entire sample, we multiply

the total number of overnight trips (last column) by the value per trip to get some

understanding of the aggregate gains and losses from changes in fishing circumstances.

Table 9 gives an estimate of the aggregate losses that would occur if the

recreational fishery were closed in each state, by wave.  These estimates are a lower

bound.  The loss per individual would be greater for the second trip than for the first trip,

and so on, and the statistics show that many anglers take more than one trip.  The

variation across state and wave is quite substantial, showing the effect of location and
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Table 8:  Number of Overnight Trips in the Northeast U.S. in 1994
(1000’s of trips).
State May-June July-

August
September
-October

November-
December

Virginia 73 90 39 5
Maryland 57 91 68 5
Delaware 16 26 12 2
New Jersey 82 206 122 13
New York 82 176 82 7
Connecticut 27 44 22 .4
Rhode Island 19 31 57 .4
Massachusetts 79 128 73 2
New Hampshire 17 10 2 n/a
Maine 15 27 11 n/a
Total 467 829 488 27.8

Table 9:  Aggregate Willlingness to Pay to Avoid Loss of  Sites in a State
By Anglers on Overnight Trips,  by State and Wave  ($1000’s).
State May-June July-

August
September
-October

November-
December

Virginia $13,673 $24,977 $4,894 $552
Maryland $5,856 $8,406 $5,045 $459
Delaware $5,463 $5,695 $2,278 $344
New Jersey $1,919 $3,846 $5,299 $224
New York $5,702 $11,324 $10,672 $639
Connecticut $555 $2,089 $2,737 $81
Rhode Island $1,032 $4,526 $2,654 $88
Massachusetts $1,583 $5,330 $4,328 $152
New Hampshire $186 $414 $341 n/a
Maine $1,111 $2,843 $2,278 n/a

season on the value per trip and the number of trips.  For example, a closure of New York

state recreational fishing for the period July-August would mean a loss of $11 million,

whereas a closure of New Hampshire for September-October would be a loss of about

$341 thousand.

While it is possible to add up losses across seasons (or waves) to reach annual

totals, this addition will yield lower bound estimates of the losses that are increasingly

lower bounds as the degree of aggregation rises.  The more alternatives that are closed,

the more the angler’s ability to substitute will be impaired.  We can demonstrate this for
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sites, for example, by showing that the losses from a simultaneous closure of Virginia and

Maryland exceed the sum of the losses from the closure of the individual states.  Although

we do not model the temporal choice, the same principle applies.

6. Cautions about the Welfare Estimates

The welfare estimates derived above are restricted in the sense that anglers are

modeled to adjust only the destination of their trips, and not the type nor the number of

trips.  For example, when catch rates increase, it would be reasonable for some anglers to

increase their fishing trips.  Likewise, other anglers might increase their single day trips at

the expense of multiple day trips.  In the absence of such adjustments, the aggregate

welfare measures are biased.  If we consider only the effects of the adjustments in the

number of trips, we can determine the direction of bias.  When an improvement in fishing

circumstances occurs, it is reasonable to suppose that anglers would increase the number

of trips they would take.  This is borne out by studies that demonstrate that the number of

trips is an increasing function of the inclusive value, which increases with improved fishing

circumstances.  When welfare measures are aggregated across trips, without allowing the

number of trips to increase, then the resultant estimate can be considered a lower bound to

the true welfare estimate.  A higher value would be achieved when anglers increased their

level of activities.

The opposite occurs when fishing conditions deteriorate, whether because of site

closings or reductions in catch rates.  When fishing conditions decline, then it is also

reasonable to believe that anglers would reduce their trips.  In that case, the value per trip

measure ought to be aggregated across a lower number of trips than the observed level.

Hence the losses in fact are not as great as they appear to be when aggregated across a

fixed number of trips.  In both cases, whether the conditions improve or deteriorate, the

under- or over-estimation is a consequence of the declining marginal value of trips.

Further the actual situation is more complicated, because not only may anglers increase or

decrease their trips, but they may also change the type—from single to multiple or vice

versa.
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7.  Conclusions:  Some Thoughts for Future Work

In this report we have estimated a random utility model and calculated the welfare

effects from several types of changes.  The model works in roughly the same way that the

model of Hicks et al. for single day trips works.  Anglers substitute among sites based on

the costs, the catch of fish, and some measures of attractiveness of the sites.  The model

we have estimated embodies strong priors on the way in which catch and other variables

influence the probability of choosing a particular site.  Thus one may consider the model

to be constructed, based on our notion of how reasonable anglers would behavior.  It is

not Bayesian in a formal sense, but it is most certainly not classical statistics either.

In past practices, the estimation of random utility models typically ended when

researchers squeezed welfare measures out of the data.  Very little sensitivity analysis has

been carried out.  This is especially true for MRFSS models, because the large size of the

data set, computer constraints, and the difficulty of calculating a consistent set of catch

rates have made the task rather monumental.  As researchers gain experience and

computer constraints fade, it is worth thinking about the more vulnerable areas of random

utility models estimated on MRFSS data.  We offer several suggestions, based on the idea

that these models should provide insight into fisheries issues.

The specification of utility, as a function of costs, time and a measure of the quality

of fishing, appears to capture the predominant forces in determining choices.  Historic

catch rates are calculated as the sum of landed fish of the appropriate species group

divided by the number of anglers intercepted at the site.  The catch rate is a compromise

between what is feasible, and measures of the quality of fishing that more accurately

capture the goals of anglers.  For small game and even big game, the catch rate, which is

essentially a count measure, may do reasonably well.  Anglers care about the number of

these fish.  But even in these species groups, one big fish--say a 20 pound striped bass—is

worth quite a number of small fish.  When there is variation in the weight of the catch,

then numbers may be misleading.  For bottom fish, and to a degree, flat fish, the aggregate

weight per trip may be a much better measure of quality than the number of fish caught

per trip because anglers often fish for these species primarily for home consumption.

Other measures of fishing quality are important for anglers.  For example the biggest fish
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could be all that matters.  It is a reasonable assumption that other measures are highly

correlated with the catch rate, but this assumption has not been tested empirically.  Given

the extensive nature of the intercept data, a variety of different variables can be calculated

and tested.

Fishing is quite different at different times of year.  Fish stocks move seasonally,

and fishing sites have vastly different appeal in different seasons because of cold or windy

weather.  Further, because species move seasonally, there are some gains from trying to

understand behavior by season.

From a methodological view, random parameters logit (RPL) models are emerging

(see Train).  These models allow greater random heterogeneity among anglers.  There are

also quite demanding to estimate in terms of computer resources.  But there are several

ways in which the RPL would be worth testing.  First, the coefficients on catch rates can

easily are easily conceived as dispersed.  Many anglers know only the slightest amount

about what species to expect.  Second, because of the size of the MRFSS dataset, it is

necessary to sample alternatives.  The efficacy of sampling when one estimates an RPL

model remains to be explored.

These problems exist with or without consideration of the overnight or multple

purpose trip. Maybe more relevant to the subject of our research is the information that

would be useful for NMFS to collect to improve our understanding and analysis of

overnight trips. We found that the purpose of the trip helps explain some of the angler’s

behavior. Unfortunately, we had information only on whether or not the angler would

have taken the overnight trip if they could not fish. It might be informative to follow this

question (for people who said fishing was not essential) with several questions concerning

why they did take the trip and why the chose the site. Questions regarding second homes,

mooring of boats or traditional family vacations could be revealing.
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Appendix A:
Aggregation of Species into Groups

Small Gamefish

Striped Bass Seatrout
Baracuda Bluefish
Mackerels Bonito
Jacks Red Drum

Bottomfish

  Sharks Catfish Pollack Carp
  Sandbar Sea Bass Kingfish Sea Robin
  Sand Tiger Butterfish Spot Pinfish
  Dogfish Porgy/Scup Black Drum Perch
  Smooth Dog Toadfish Hake
  Brown Cat Sawfish Tautog
  Nurse Sheepshead Grouper
  Cat Grunt Cod

Flatfish

Summer Flounder
Sole
Winter Flounder (Fluke)
Southern Flounder
Flounders

Big Gamefish

  Sharks Tunas
  Blue Sailfish
  Thresher Wahoo
  Mako Marlins
  Hammerheads Swordfish
  White Dolphin
  Tiger
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Appendix B:  Site Definitions

State (sites per state) Counties (or independent cities in Virginia)

Maine  (8) Cumberland Kennebec and Sagahadoc
Hancock Penobscott and Waldo
Knox York
Lincoln Washington

New Hampshire (1) Rockingham and Hudson

Massachusetts (8) Barnstable Nantucket
Bristol Norfolk
Dukes Plymouth
Essex Suffolk

Rhode Island  (5) Bristol Providence
Kent Washington
Newport

Connecticut  (4) Fairfield Middlesex
New Haven New London

New York  (10) Bronx Kings
Nassau sound side Queens
Nassau ocean side Richmond
Suffolk sound side Westchester
Suffolk bays Suffolk internal

New Jersey (8) Atlantic Cape May bay side
Cumberland Cape May ocean side
Middlesex Monmouth bay side
Ocean Monmouth ocean side

Delaware (4) Kent Sussex north of Lewes
New Castle Sussex south of Lewes

Maryland (7) Anne Arundel Charles and St. Mary’s
Calvert Dorchester and Somerset
Worcester Baltimore, Cecil and Hartford
Caroline, Kent, Queen Anne’s and Talbot
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Virginia  (8) Virginia Beach
Accomack and North Hampton
Essex, Gloucester, King William, Mathews, Middlesex, Caroline

and Fredericksburg
Hampton City, Newport News, and Poquoson
Isle of Wight, Suffolk and Surry
James City and York
King George, Lancaster, Northhumberland, Richmond, and
Westmoreland
Norfolk and Portsmouth


